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Inhomogeneous Contact Processes on Trees 
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We consider an inhomogeneous contact process on a tree Tk of degree k, where 
the infection rate at any site is 2, the death rate at any site in S c  "]-k is 8 (with 
0 < ~ ~< 1 ) and that at any site in Tk -- S is 1. Denote by 2,.(~-k) the critical value 
for the homogeneous model (i.e., 8 =  1) on ~-k and by 0(~, 2) the survival 
probability of the inhomogeneous model on Tk. We prove that when k > 4, if 
S = To, a subtree embedded in Tk, with 1 ~< tr ~< v/k,  then there exists ~ strictly 
between 2c(Tk)/2,.(T~) and 1 such that 0(~,2,.(~-k))=0 when ~ > ~  and 
0(8, 2,.(~-k)) > 0 when 8 < 8~; if S = {o}, the origin of Tk, then 0(8, )~c(~-k)) = 0 
for any 8~(0 ,  1). 
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1. I N T R O D U C T I O N  

The contact process on a lattice l_ can be defined by the usual graphical 
representation as follows. Consider the space 0_ x [0, Go), in which D_ 
represents the spatial component and [0, Go) represents time. Along each 
vertical time line {x} x [0, Go), where x is a site in Q_, is positioned a 
Poisson process of points, called deaths, with density ~(x); between each 
ordered pair  {x1} x [-0, 0(3) and {x2} x [0, Go) of  nearest neighbor lines, 
there is a Poisson process, with density 2, of bonds oriented in the direction 
Xl to x2. All these Poisson processes are taken to be independent of each 
other. In this note we consider the contact process on Tk, a tree with 
degree k (i.e., each site of Tk has exactly k + 1 neighbors). For results on 
the homogeneous contact process on trees (i.e., fi(x) = 1 for all x e l-k), see 
for example refs. 7, 11, and 12. We are interested in the following two cases 
of inhomogeneous models: 
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Case (a). O(x) = ~  for any x e Y ~  and O(x)= 1 for any x e T k - T ~ ,  
where q]-~ is a subtree of degree a (with 1 ~< a < k) embedded in T~. 

Case (b ) .  fi(o) =~ and c~(x) = 1 for any x e  T k -  {o}, where o is the 
origin of T~. 

We write Pa. ~ for the resulting probability measure and Ea. x for the 
corresponding expectation. When ~ = 1, this corresponds to the homo- 
geneous model, for which we will simply write Px rather than P~. x. A Point 
(x, t~) in D_ x [0, 0o) is said to be connected to another point (y, t2) (with 
tl ~< t2) if there is a path from (x, t~) to (y, t2) using vertical line segments 
traversed in the upward direction and oriented horizontal bonds and 
traversing no points of death. We denote this event by (x, t ~ ) ~  (y, t2). 

Let ~, be the set of sites x in L such that the origin (o, 0) of n_ x [0, 0o) 
is connected to (x, t). If we treat the contact process in the usual way as 
a model for the spread of infection, then ~, is the set of infected sites at time 
t when initially only the origin is infected. Let 

C(x, t) = {(y, s): (x, t) ~ (y, s)} 

denote the cluster of (x, t). We write C for C(o, 0). Define the survival 
probability to be 

0(6, 2) = Pa, ~(~, ~ ~ for all t ~> 0) ( 1.1 ) 

where ~ denotes the empty set. Then the critical value (for the homo- 
geneous model) is defined by 

2+ = 2,(L) = inf{2: 0(1, 2) >0}.  (1.2) 

For the contact process on 71 d, the analogues of cases (a) and (b) are: 

Case (a ' ) .  6 (x )=O for any xe{0}J -=xT7  = and 6 ( x ) = l  for any 
x e Y J - ( { 0 } d - = x  7/=), where 1 <<.s<<.d- 1. 

Case (b ' ) .  ~ ( o ) = ~  and O ( x ) = l  for any xe;Vd-{o},  where o 
denotes the origin of 7/d. 

Madras, Schinazi and Schonmann ~81 considered case (b') and proved, 
among many other things, that if 2 < 2~, then 

0 ( ~ , 2 ) = 0  forany de (0 ,  1]. (1.3) 

They conjectured that 

0(6,2,~)=0 forany Oe(0,  1]. (1.4) 
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Note that (1.4) (for 1 < & < 1) is stronger than 

0(1, 2c)=0,  (1.5) 

which is a fundamental result of Bezuidenhout and Grimmett. r Newman 
and Wu (~~ considered case (a') and conjectured that (for 1 <<.s<<.d-1) 
there exists a critical point ds in (2c(7_a)/2c(7_s), 1) for 6 such that 

0(6, 2~) = 0 if 6 > 5~ 
0(5, 2c) > 0 if 5 < 6~ (1.6) 

They also found some sufficient conditions for conjectures (1.4) and (1.6) 
to be true in high dimensions. These sufficient conditions can be verified 
using the infrared bound for the contact process on 7/d. However the 
infrared bound for the contact process on 2va has not been rigorously 
proved, although it is expected to be true when d > 4. Conjectures (1.4) and 
(1.6) remain open for any dimension. 

In this note, we consider the inhomogeneous contact process on trees, 
i.e., cases (a) and (b). We will prove the analogues of conjectures (1.4) 
and (1.6) for trees when the degree k is above four, using an estimate of 
the connectivity function of the contact process on trees proved in ref. 13 
(see (2.15) below). We remark that the argument presented here does not 
work for the contact process on 7/a because we do not have an estimate 
like (2.15) on Z d. Recall that 2c(~-) is the critical value of 2 for the 
(homogeneous) contact process on L. We write 2c for )~c(Tk) when it does 
not cause confusion. 

T h e o r e m  1. In case (a), if k > 4 and 1 ~< a ~< v /k ,  then there exists 
6c ~ in (2c/2c(To), 1) such that 

{0(~, 2c) = 0  if ~ > ~  
(1.7) 

0(~, 2~) > 0  if 6 < 6 1  

T h e o r e m  2. In case (b), if k > 4, then 

0(6,2c)=0 forany 6~(0,  1] (1.8) 

Note that it has been proved that 0(1 ,2c)=0 for any k~>2 by 
Morrow, Schinazi and Zhang (9) and for k =  1 by Bezuidenhout and 
Grimmett(4)~a tree with k = 1 is just the one dimensional lattice Z. 

We expect that Theorem 1 is true for any k ~> 2 and 1 ~< a ~< k - 1, and 
Theorem 2 is true for any k i> 1. At the present our argument does not 
work when 2 ~< k ~< 4 or when x/~ < a ~< k - 1 for Theorem 1 and when 
1 ~< k ~< 4 for Theorem 2. On the other hand, it is not hard to see that in 
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case (b), for any k~>2 there exists e > 0  such that 0(6, 2c)=0  for any 
6 s ( 1 - e ,  1], using the fact that for the homogeneous model, when the 
infection rate is a little above 2<, the infection will eventually leave any 
finite region (see refs. 7, 11, 12). Finally we remark that the analogous 
results of Theorems 1 and 2 for independent percolation and oriented 
percolation on 3-k X 7/ (see refs. 6 and 13) can be obtained by the same 
argument presented here. 

2. PROOF OF THEOREMS 

Proof of  Theorem 1. First of all, it is not hard to see that if 
6<2</2c(T~) then 0(6,2c)>0, since if 6<2c/2c(T,,) then 2c/6>2r 
and hence the infection already survives on the subtree 1-, embedded in Tk. 
Thus 6~ ~> 2~/2~(T~). The strict inequality &~ > 2~/2~(-f~) then follows from 
Theorem 1 of Aizenman and Grimmett (~) applied to the contact process 
(see pp. 826-827 of ref. 1), since the positive infection rate on the sites of 
T k -  T~ provides an essential enhancement for the contact process on 1-~. 
On the other hand, to show &~ < 1, one needs to prove that there exists 
e > 0 such that 

O(1--e, 2c)=O (2.1) 

Let 

C* = C(o,  O) c~ (T , ,  x R + ) = { (x ,  t ) :  x e 3-,,, (o,  O) --* (x ,  t) in  3- k x 1~ + } 

(2.2) 

be the intersection of the cluster of the origin with T,  x ~ + (R + = [ 0, m)). 
For A x c {x} x R +, we denote by IIA=[I the Lebesgue measure of A x and 
for A c ~-~ x N +, we define 

IIAII= ~ IIAc~({x} x~+)l] (2.3) 
X~Tk 

Then we define the expected infection time in T~ by 

E z(6)~E~,~, IIC*l = ~ P a , ~ ( ( o , O ) ~ ( x , t ) ) d t  (2.4) 
x ~  ~-~r 

The idea of proving (2.1) is to show that 

X(1 - e )  < oc. (2.5) 
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To see how (2.1) follows from (2.5), we first show that (2.5) implies 
that almost surely C(o, 0) will never intersect -g~ x ~ § when t is large (see 
ref. (2.10) below). This is not quite obvious since it could be the case that 
C(o, 0) intersects T~ x ~+ infinitely often (at arbitrarily large t) but in such 
a way that it hits -g~ x ~ § (for a very short period) and then leaves, and 
then comes back at some later time and hits and leaves again, and so on 
forever. It is not hard to show that 

P~,x,.((o,O)-*{x}x[n,n+l))<~c ~ P6,~,.((o,O)~(x,t))dt 
x~r~ ~=o x ~  (2.6) 

where {x} x [ n , n + l )  is an unit interval on the line { x } x R  + and 
c= 1/P~,~,. (no death in {x} x [n, n +2))  (~<e2). To see this, observe that 
for any t e [ n +  1, n + 2 )  

P~, ~,.((o, 0) ~ {x} x [n, n + 1), no death in {x} x [n, n +2) )  

<<. P6,a,.((o, O) ~ (x, t)) (2.7) 

which implies by the F K G  inequalities (see ref. 5) that 

P6. a,((o,O)--* {x} x[n,n+l))<~ce6, a,((o,O)-*(x, t)) (2.8) 

Inequality (2.6) then follows from integrating (2.8) (with respect to t) over 
[n + 1, n + 2) and then sum over n. Define 

I n t ( C * ) = { { x } x [ n , n + l ) : ( { x } x [ n , n + l ) ) c ~ C * r  (2.9) 

to be the set of unit intervals which C* intersects. Write I Int(C*)l for the 
number of elements in Int(C*). Then by (2.5) and (2.6) 

E~ ~. ~, Ilnt(C*)l <<. cz(1 - e )  < oc (2.10) 

Write 

{ ~ t # ~ , V t ~ 0 }  = 

Then from (2.10), 

~, # ~ ,  Vt ~> 0 and IInt(C*)l < oo} 

w {xi, ~ fg, Vt >>. 0 and IZnt(C*)l : ow} (2.11) 

P1 ~,~,.(~,~3, Vt~>O and Jlnt(C*)l = ~ ) = 0  (2.12) 
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Moreover 

P~-=,~,.(~t ~ ~ ,  Vt>~0 and Ilnt( C*)l < ~ )  

~< P~ _=, ~,.(t a positive integer n and a site x ~ Tk -- T~ 

such that (o, 0) ~ (x, n), 

and infection initiated at (x, n) survives forever within Tk -- T , )  

<~ ~ ~ e l  _~. a,. (infection initiated at (x, n) 
n = O  . ' r  a 

survives forever within T~ - T . )  

= ~ ~ P1, 4,. (infection initiated at (x, n) 
n = O  x ~ T k - - ~  a 

survives forever within Tk -- ]-~) 

~< ~ ~ Pl, ~,. (infection initiated at (x, n) 
n = 0  x ~ T k - - ~ -  a 

survives forever within Tk) 

= ~ E 0(1, 2,.)=0. (2.13) 
n = O  X E ~ k - - T  a 

Where at the last step we use the result that 0 (1 ,2c)=0.  Combining 
(2.11)-(2.13) implies (2.1). 

We next prove (2.5). We first show that 

z(1)- Y, PL,~,((o,O)--,(x,t))dt<~ (2.14) 
X~T~r 

when k > 4 and 1 ~ a ~< x /~  (this is where we need the unpleasant assump- 
tion). From Lemma 2 in ref. 13 we have 

~i  Pl, 4((0, O) ~ (x, t)) dt <<. 
1 

1 _ 2 x/~ 2 (22)lxl (2.15) 

when 2 < 1/(2 x/~), where Ix[ is the graph distance from x ~ Tk to the origin 
of Yk. Since it is also known that 2 x/k  2c < 1 for k > 4 (see Theorem 2.2 
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in ref. 11 or the proof of Corollary 1 in ref. 13), we have from (2.14) and 
(2.15) that 

1 
Z(1)~  < ~ ( 22 r  'x' 

1 - 2  x /~2c  x~v+ 

_ 1 [ 1 +  ~, ( a + l ) a " - 1 ( 2 2 c )  ~] (2.16) 
1 - 2  v /k2c  ,= t  

where the equality uses the isotropy of the tree T~. The RHS of (2.16) is 
finite when (1 ~< ) a ~< x/~. 

Finally we show that X(1) < oo implies X(1 - e )  < oo for some (small) 
e > 0. It is proved in ref. 3 (see Proposition 3.2 there) that 

d 
(Ox ( ) ~ [El,2 II C(o, O)ll l <(k+ 1)[EI,.~ IIC(o, 0)113 2 (2.17) 

which extends the analogous differential inequality obtained by Aizenman 
and Newman (:) for percolation to the contact process. The same argument 
can be used to prove that 

d (0<)-~ X(6)< [X(6)] 2 (2.18) 

We note that there is no factor of k +  1 in (2.18) because the derivative 
there is with respect to the death rate (in T~) rather than the infection rate 
2, and there is a negative sign because X(6) is a decreasing function of & 
Write (2.18) as 

d 
)-~ [X(6)] - '4  1 (2.19) 

and integrate it over [ 1 - e ,  1 ], we have that 

Z(1)-l-X(1-e)-~<~e or x ( l - e )  ~ < - -  
x(1) 

1 -eZ(1 ) 
(2.20) 

for 0 < e < X(1) 1. This completes the proof of the Theorem. | 

Proof of  Theorem 2. For technical reasons, we extend the time coor- 
dinate from [0, oo) to R = ( -  o% oo). It should be clear that the graphical 
representation can be extended to ql- k x R. We write {o} x t instead of (o, t) 
for a point on {o} x R. We use {o} x (a, b] --* {o} x (a', b ' l  to denote the 
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event that {0} x t ~ { o }  x t '  for some a<t<~b and a'<t'<.b'. We call 
a point {0} x n of {0} x R (with n an integer) a breakpoint if 
{0} x ( - o % n - 1 ]  7~ {0} x(n, 00). Denote by "{0} •  ~'] ~ {0} x 
(m, m + 1 ] in (q]-k- {0} ) x R" the complement of the event that there exist 
{ o } x t ~ { o } x ( f - l , g ] a n d { o } x u e { o } •  
connected to {0} x u  by a path )~ which intersects {0} x R  only at {0} x t  
and {0} x u. Note that this event is independent of the Poisson process of 
deaths on {0} x R. Let B be the event that there is a death in the interval 
{0} x (0, 1) and there is no bond leaving or entering {0} x (0, 1]. Then by 
the FKG inequalities we have for any 0 < ~ < 1 that 

P~.~({o} x 1 is a breakpoint) 

~> Pa, ac (B occurs, and { o} x ( - 0% 0 ] 7 ~ { 0 } x ( 1, 00) 

i n ( T ~ -  {o})x N) 

>~Po, x~(B) I-[ P~,~c({o} x ( Y -  1, f ]  7~ {o} x ( m , m +  1] 
E~<0, m ) l  

in ( T ~ -  {0}) x N) 

~-P6,).c (B) H el,2c({o} • 1, W] ~ {o} x ( m , m +  11 
d<~O,m>~l 

in (]l- k -  {o} ) x N) 

>~P6,.~c(B) H (1 --Pl,.~c({o } x ( f - -  1,1] ~ {o} • m+ 11)) 
l~o,.,~>, (2.21) 

Similar to (2.8), one can show by the FKG inequalities that for any 
{ o } x t ~ { o } x ( l - l , l ]  and { o } x u ~ { o } x ( m , m + l ]  

P,,a({o} x (g- -  1, f]--* {o} x ( m , m +  1]) 

~cP1,2({o } • (t--1)~ {o} x ( u +  1)) (2.22) 

with c = 1/PI,~ (no death in ( { o } • (g - 2, ~' ] ) w ( { o } x ( m, m + 2 ] )), which 
implies that 

2 
g~<O 
m~>l 

P,.~({o} •  1, d] ~ {o} •  1]) 

<.<c I • 
- - o 9 ' 1  

(2.23) 
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Using an argument similar to the proof of Lemma 2 in ref. 13 (which is 
built on an argument of ref. 6), it can be shown that when 2c < 1/(2 x/~) 

~,~ fl~ Pl.~((o, t) ~ (o, u) ) du dt < ~ (2.24) 

But 2c < 1/(2 x/~) when k > 4 (see again, Theorem 2.2 of ref. 11). Com- 
bining (2.21), (2.23) and (2.24), we have that when k > 4  

P~, ~c({o} x 1 is a breakpoint) > 0 

Therefore from the ergodicity and translation invariance along the time 
coordinate, when k > 4 

P~, ~c({ o} x n is a breakpoint for infinitely many 

(both positive and negative) n) = 1 (2.25) 

Now suppose 0(J, 2~)>0, then by (2.25) and arguing similar to (2.13), 
there exist an integer n and x ~ Tk--{o} such that 

P~, ~c (infection initiated at {x} x n survives forever within T k - { o} ) > 0 

(2.26) 

(2.26) also holds when J is replaced by 1 since the event on its LHS does 
not depend on the death rate at {o}. A contradiction to 0(1, 2~)=0. I 
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